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Assessing Risks Through the Determination of

Rare Event Probabilities f
£

by

Allan R. Sampson and Robert L. Smith

Abstract

We consider the problem in risk assessment of evaluating the

probability of occurrence of rare, but potentially catastrophic,

events. The lack of historical data due to the sheer novelty of

the event makes conventional statistical approaches inappropriatec.
The problem is compounded by the complex multivariate dependencies
that may exist across potential event sites. In order to evaluate

the likelihood of one or more such catastrophic events occuring, we

v T ———

provide an information theoretic model for merging a decision maker's
opinion with expert judgment. Also provided is a methodology for

the reconciling of conflicting expert judgments. This merging approach
is invariant to the decision maker's viewpoint in the limiting case

of exceptionally rare events. These methods are applied to case

] studies in likelihood assessment of Liquid Natural Gas tanker spills

and seismic induced light water nuclear reactor meltdowns.

KEY WORDS: risk assessment, information theory, merging opinions,
rare events, Fréchét bounds, LNG tanker spills, nuclear reactor
safety.




 3 Assessing Risks Through the Determination of

Rare Event Probabilities

by

Allan R. Sampson* and Robert L. Smith

1. INTRODUCTION ‘

In an increasingly complex and technological world, method-
ologies for dealing with risk assessment have taken on new impor-
tance. The scale and power of technology have created the
potentiality for the occurrence of truly catastrophic events. These
include, but are not limited to, LNG (liquid natural gas) tanker b
explosions, serious nuclear reactor accidents, recombinant DNA
accidents, and nuclear weapons accidents. Nevertheless, the more
remote the likelihood of such an occurrence, the less apprechensive
we are, until some threshold probability P is reached bhelow which
we become indifferent. This threshold value of course depends
heavily on the seriousness of the consequences were the évent to
! occur. Risk assessment therefore can be viewed as a two-fold process
comprising i) the assessment of the likelihood of an undesircable

event occurring (risk determination, see Rowe (1977)), and ii) the

valuation of the consequences to the risk taker were that event to

occur (risk evaluation, see Rowe). Our focus in this paper is on

the first problem of risk determination.
Risk determination is a particularly difficult task because of

the sheer novelty of the event of concern. Being catastrophic, it

is almost certainly a rare event, and morcover may never have histor-

ically occurred. This lack of historical statistical data makes it

*The work of this author is sponsored in part by the Office of Scien-
tific Research, Air Force Systems Command under contract r49620-~79-
-C-0161. Reproduction in whole or in part is permitted for any pur=
poses of the United States Government.




difficult, if not impossible, to usec conventional data analysis to
assess the likelihood of the event's occurrence. We are in a situa-
tion of formulating a probability model, where the model must be
based on limited structural information. Concerning these concepts
in assessing nuclear reactor safety, Lewis (1980) writes that

"a reactor accident with public consequences is demon-

strably an extremely improbable event for which therc is

no actuarial record. When any event, such as a putative

reactor accident, has a very low probability, but poten-

tially severe consequences, it mcans that safety analysis

must be based on theoretical calculations rather than on

experience and this leads to special problems."
The decision maker (who must ultimately make the determination as
to how "safe" the relevant technology or system is) is prototypically
confronted with probability judgments from one or more ecxperts, often
in conflict with his own personal assessment as well as with ecach
other. The term "experts" is used generically to denote individuals,
commissions, study groups, etc. The decision maker's task is to
reconcile the conflicts and merge the opinions in a responsible and
consistent fashion. The probability assessment (or range of assess-
ments) thus synthesized may be compared with the threshold proba-
bility value and a decision may be reached as to whether or not
action is warranted.

We propose in this paper a methodology that_will provide for
a consistent merging of the decision maker's opinions with expert
judgments as to the event's likelihood. We show that for rare
events, the model provides for 1§£ order agreement as to the event's

likelihood no matter what the initial views of the decision maker.

Further, the model leads to a sensible procedure for reconciling,

merging, and updating differing expert judgments.




Consider now two case studies in risk assessment. The first
case will later illustrate the merging of a decision maker's view=- S
point with expert judgment, and the second will illustrate the .

model's procedure for reconciling differing expert opinions.

Case Study 1 (LNG Tanker Movement)

The possibility of a large spill of LNG (Liguid Matural Gas)
in a harbor due to a tanker collision is a potential hazard of
considerable concern. It is widely held that such an occurrence
could result in a catastrophic conflagration whose consequences are
of the same order of magnitude in lives and property as a major
accident at a nuclear power plant. It is therefore essential to
obtain estimates of the likelihood of such an event occuring.

In 1974, the Federal Power Commission requested a report by
independent consultants as to the risk posed by proposed LNG Tanker {

movement in the New York harbor. Table 1 (taken from Fairley (1977))

represents a summary of the central findings of that report. The
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report generated two summary figures. The p = figure

1
4,664,179
represents the probability that an undesireable LNG event occurs on
a single (typical) trip. The number is clearly an average proba-
bility over the various trips one could expect over the 10 vyear
= figure as
3746

the probability of at least one undesireable LNG event over the 10

horizon time. The Commission interpreted the u =

year horizon. In fact, this figure is the expected number of such
events and only corresponds to the approximate probability of such

an event when the number of such events follows a Poisson probability
law. No justification is apparent for such an assumption. The

risk probability of 5%?3 was deemed by the Federal Power Commission
as low enough so that the proposed LNG tanker and barge movement

posed an acceptable risk.

Case Study 2: (Seismic Safety of Nuclear Reactors)

There are approximately 100 light water nuclear reactors cur-
rently operational around the United States. One of the environ-
mental hazards potentially leading to a core meltdown is severe
seismic activity (earthquakes exceeding 0.2g ground acceleration).
In 1974, the U.S. Nuclear Regulatory Commission commissioned a study
to quantitatively assess nuclear reactor risks; this included study-
ing the effects of earthquakes. The report generated by that study
is known as WASH—1400 or, more informally, the Rasmussen report (see
U.S. Nuclear Regulatory Commission (1975)). The NRC concluded that
earthquake risk was negligibly small compared to other reactor acci-
dent risks. Table 2 summarizes the data and analysis that supported
this conclusion.

Three levels of earthquake severity were considered and the

resulting overall probability p of core meltdown over a given year

3
|
|
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Table 2. Summary of U.S. NRC Report on Probability of Core
Melt Due to Earthquake for an Average Site in the Eastern U.S.

Ground Earthquake Prob £d Core melt prob.
acceleration prob. per year ob. © amage per reactor year
0.2g 7 x 107° 3 x 107° 2.1 x 1078
0.5g 5 x 107° 3 x 1073 1.5 x 1077
1.0qg 1 x 1073 3 x 1072 3 x 107/

Overall core melt probability per reactor year 4.7 x 10_7

at an average (typical) site was computed. The figure arrived at
by the Commission was p = 4.7 x 10—7. A project sponsored by the
National Science Foundation and under the Directorship of David
Okrent (1977, Chapter 9) considered the same problem and arrived

at an alternative probability of p' = 8 x 10—5 (assuming minimal

or no reactor design errors). This project study differed primarily
in its explicit consideration of alternative failure modes leading
to core meltdown. This represents a particularly vexing situation
for the decision maker who must decide whether or not the risk is
acceptable when confronted by conflicting expert opinion. The gues-
tion arises as how to "average" the two judgments for p. Moreover,
how does the decision maker include his personal viewpoint into the
reconcilation process?

A number of issues concerning risk assessment are considered in
this paper. 1In Section 2, the general probabilistic structure for
evaluating site dependencies is discussed. An information theoretic
model is introduced in Section 3; and in Section 4, this model is used

for reconciling and updating several expert judgments. A brief
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discussion of some computational aspects is given in Section 5.
Applications of these results to the two Case Studies are considered
throughout. Proofs and certain technical material can be found in

Appendices A, B, C and D.

2. RISK DETERMINATION WITH SITE DEPENDENCIES

2.1 Relating Risk Determination to Site Occurrences

In this section, we consider a general model applicable for a
wide variety of risk determination problems.

Suppose we are interested in assessing the likelihood of an
event E which may or may not occur at one or more of M sites. Site
is here a generic term that may refer to components within a sub-
system, or subsystems within a system, or literally geographical
site locations for facilities. It is assumed that FE is sufficiently
rare that the possibility of two or more occurrences at a single
site over the horizon time of interest can be effectively ignored.
Let ¥. = 1, or 0, according to whether, or not, E occurs at site j,

]

that Wl, «.oy ¥, constitute a complete specification of the outcome

M
of the event process. The event E is regarded as catastrophic were
it to occur even once; therefore, our attention is directed to the

random variable X denoting the number of occurrences of E. Our

interest is in obtaining the probability P, of a catastrophic event,

M
where Pc z P(X > 1). Note that X = I ¥.. Since X can be expressed
j=1
in terms of Wl, ey WM' Pc is readily obtainable once the multi-
variate distribution of Wl, ey WM is known. 1If Wl, cees WM were

independent, they would constitute so-called Poisson trials (Feller

(1968, p. 218)) and it is not difficult to show that P_ > 1 - e ",

SO




a
?
!

where u = % 7. is the expected number of occurrences of E over the
M sites and . = P(\Pj = 1) is the probability of an occurrence of E
at site j, j =1, ..., M. Moreover, for fixed u (see Feller (1968,
p. 282))
(2.1) limp_ =1 - e ",

M-
Equation (2.1), therefore, gives Pc in terms of the expected number
of occurrences of E, when E is rare, the number of sites is large,

and the occurrences are independent across sites.

Unfortunately, the site independence assumption is in most cases
not warranted. Commonality of components, facility design, and
operational procedures introduces significant dependencies across

sites that can not be disregarded. 1In short, Wl, Wz, ey WM are

typically dependent random variables. (See Appendix A for a tech-

nical discussion of this point.) 1In this case, Tysr Tor eeer Ty

do not uniquely define the multivariate distribution of Wl, oo

Y One must in fact specify the probabilities for all possible

M

values that Wl, ey WM may jointly assume, i.e., for all binary

M-vectors. For example, for M = 100 light water reactor sites, the

number of distinct probability values required is 2100. Clearly,

1r ceer WM

is impractical in the absence of underlying structural models for

the task of specifying a multivariate distribution for V¥

the dependencies involved. However, modeling dependency in complex
environments such as the ones being considered is currently beyond
the state of the art. On the other hand, obtaining reliable judg-

ments concerning each of the marginal distributions of the ¥.,, or

equivalently, of the Wj is certainly reasonable. (Event tree and




fault tree analysis are very effective tools in this regard. See

Barlow and Proschan (1975, pp. 255-274) for a thorough discussion

of these techniques.)

2.2 Risk Probability Bounds and Expert Judgment

Specification of the marginal probabilities Ter Tor eeey Ty

constrains the multivariate probability distribution over Wl, Wy,

cens WM and, therefore, limits the possible multivariate distribu-
tions. These constraints in turn give rise to a range of possible
values of Pc. If this interval covers the indifference probability,
there is uncertainty as to whether or not the potential for cata-
strophe should be of concern. If, however, the interval lies
entirely below the critical value or entirely above the critical
value, then we have an unequivocal answer as to where the actual
probability of catastrophe PC lies relative to the threshold proha-
bility Pn.

Given m,, LY upper and lower bounds for Pc can be

» -

MI
derived from the multivariate Frechet-Hoeffding bounds for multi-

variate c.d.f.'s (e.g., Dall'Aglio (1972)). (See Appendix A for

the derivation.) These bounds are

. M
(2.2) max m, < P_ < min( z w,,1).
1<i<m * ¢ i=1 *
M
For I " < 1, these bounds are attainable, i.e., there exist actual
i=1l

site dependencies with the noted marginal probabilities giving rise
to each P in the interval of (2.2). Note that not all of the infor-

mation in the values Ty T is utilized in constructing

of tee "M

these upper and lower bounds. In particular, we need to know only

their sum and their largest value.




Now suppose that we wish to construct bounds for Pc, where the

only information available concerning the marginal probabilities
M

is that we are given p = M_1 Loy which is the site average proba-
i=1
bility of E occurring at a typical (randomly selected) site. Among
M
the class of all multivariate c.d.f.'s with ¥ Prob('ili =1) = Mp,
i=1

the following tight bounds can be obtained for Pc

(2.3) P <P < Mp.

(o]

Note that the upper bounds of (2.2) and (2.3) are the same while
the lower bounds differ. Usually, it is the upper bound on P, that
is of interest, the expectation being that this upper bound will be

below the threshold probability; in this situation Tie Tor ~eer Ty
M
1 .

provide no additional information beyond that provided by M~ ';1ni.
Equation (2.3) requires a valuation of p, the probabilit;"that

E occurs at a typical site, and M, the number of sites. This form

of expert judgment as model input is natural and quite mini-

mal in its demands on the expert. TFor examnle, Lewis notes that

the Rasmussen report concerning light water reactor safety focused

on "one typical ... reactor." Again note that it is not necessary

to know anything about the possible dependencies over the sites to
M

specify p and M, since p =M ~ I L is only a function of the marginal |

i=1
distributions over the sites. It will later be useful for technical

reasons to have the expert judgment re-expressed in terms of u = EX,

the mean number of occurrences of E over all sites, Note that

M M M M
w=E Z V¥, = IEY,= ZP(¥Y.=1)= I ., =Mp
j=1 7 =1 I 3= 3 j=1J
regardless of the multivariate distribution of Wl, ey WM. Hence,

(2.3) may be rewritten in terms of u, without imposing any additional
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assumptions, as the following

-1

(2.4) M 'uw <P <.

o]

Accordingly, a specification of the value of y will formally be

referred to hereafter as the expert judgment. Also, because the

upper bound in (2.4) is informative only when p < 1, we will define
E as a rare event whenever n < 1, i.e., whenever expert judgment is
that it is "not expected to occur."

Equation (2.4) expresses the range of possible probabilities
P consistent with a given specification for p. Of course, there
may be considerable uncertainty surrounding the valuation of
p and hence u. It is useful, therefore, to invert (2.4) to find

what range of values of u lead to P. 2 P, .and P, 2P respectively.

TI
The corresponding lower and upper bounds for u are given hy the

following relations

Pc > P if u
{(2.5)

P, <P if  uw < u(p

| v
©-
lav)
i
o

—
i
o

Alternatively, one may ask what range of values of u is consistent
(in the sense of satisfying (2.4)) with a given value for P.. It

follows directly from (2.5) that the interval of consistent values

of py is

(2.6) (P < < u(p)) .

The bounds of equation (2.6) may be vieweA as providing a sensitivity
analysis for P, in terms of allowable values of u. In other words,

as long as the perceived uncertainty in the true value of u lies

R |
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within the bounds given by (2.6), there is no logical inconsistency

in adopting the value P_ as the probability of catastrophe.

2.3 Consistency Analysis for LNG Tanker Movements

In a critique of the study concerning the safety of LNG tanker
movements, Fairley (1977) notes that the probabilities of most
factors could possibly be upwardly corrected. The upward correc-
tions are summarized in the following table taken from Fairley (1974,

p. 344).

Table 3. Possible Correction Factors for

ING Tanker Movement Probabilities

Possible upward cor-

rection factor for (
estimate (Multiply i
times original esti-
mated prohabhilities i
in Table 1). .

Source of error
Factor Symbol or uncertainty
in estimate

B Reporting error 2 -5
3 .
Extrapolation to 2 -5
TNG veaasels
! C Speanleotively 5
Nhoced eotinate
D Unsnhetpntiat-nd 2+
:"hr\nr_\' %
' i E Defini-ional 1.5 %
| i orror !
{ .
‘ G Speculatively 5

haced cctimete

The use of these correction factors (multipliers of 16 and 2 were

used for factors B and D, respectively) would vrwardly adjust the

) 1 . . . o
p from T RGATTD to TR - This, in turn, usina the original

9

study methodology would change hoth 1 ans ™ from w—-— to

q N It

3.1 ¢
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appears that this aspect of the critique focuses on possible changes
in u and not on the methodology for obtaining Pc from u. Based on
a consistency analysis (employing (2.6)) for P_ = 3—%55 , we can

’

see that any u in the interval (3 %46 ’ 310) could give rise to the

noted P, of §—%T€ through use of alternative probability models.
’

Clearly u = §lT falls in this interval. This analysis then suggests

that model selection (or equivalently, as discussed in Section 3,
the decision maker's viewpoint) is at least as important as obtain-

ing an expert's judgment that is reliable.

2.4 Risk Determination and the Decision Maker's Viewpoint

As discussed, the various bounds presented will in
some cases unequivocally decide the issue nf acceptable risk. How-
ever, when the range of uncertainty in true Pc given by (2.4) covers

the threshold value P we must look to a more detailed model to

T
arrive at a risk determination. The expert judgment, u, cannot by
itself resolve the issue, and it is at this point that the viewpoint
of the decision maker must be taken intc account. The decision
maker retains ultimate responsibility and is not allowed the luxury

of being noncommittal. We model his viewpecint about the number of

potential occurrences of E by his assessment of the probability dis-

tribution governing X. The decision maker's viewpoint will accord-

ingly be represented by a (M+l)~vector p where P; equals the decision
N

maker's probability that there will be i occurrences of E. Simple
and effective procedures for eliciting such subjective probability
distributions exist and are well documented in the literature (see

Raiffa (1968)). The viewpoint of the decision maker thus elicited

q’.
i
i

[

e S et ke
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as to the nrohability Jdistribution of X will not in general be con-

sistent with expert Suwdamont aas +n the mean ot Y,

3. ANM_INFORMATTON THEORETTC MODR,

3.1 General Model

The decision maker initially holds to a fived viewpoint concern-
ing the likelihoods of the number of catastrophes. Thie viewpoint is
cxpressed as the prohahility vector p governing the random variahle

.

¥X. Howcver, given eypert judament that the mean of X is u, the
dccision maker is compelled to adjust his viewsnint oo as to b con-
sistont with eryport judament. Thic odjustmren! process can ho
evpocted to result in A now vicwpoint as "alose” as posaihla to thn
initial viewpoint of the decision maker and vel consichontc with tho
evpert. There is a natural probabilistic acomnrtry in which thin

§ procoss can he embhedded,.  Thr eypert’s judgmen® is modeled as o

linear suhgpace of the M-dimensional cimpleov of probahility digktri.
butions, namely

M M
a = {lg cee, a,) Y da, = | Yoa, = 31, and a, > 0,
n' ’ h ’ v
(3.3) ; M s=n 0 i i

0, ... MY

The decision maker's viewpoint modeled as p = (pn, .y pM)' whore
n,
P, = Proh(X = j), is also & point in the M-dimensional simpley, but

is not in general a point in S“. The adjustment process js viewed

. . . - . . n
as findina the adjusted decision maker's viewpoint p = (p?, e
n,
A A . , . C s
PM), vhere p n S“ and the "Ajistance” from p to p is minimirced.
n, n, n,

Note that the probability of a catastrophic cvent bhased upon mercina

the decision maker's viewpoint and the eypert judament is r, =1 - pg.

-
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Prior to having the expert judgment available, the decision maker's
"initial assessment” of Pc was 1 - Py-
It is illustrative to examine this in the simple case when M

= 2 using baricentric coordinates.

Figure 3.1

Adjusting Viewpoints Based Upon Expert Judgment (M = 2) l

(1,0,0)

Expert Judgment Space: Su

Adjusted Viewpoint: pA
A

a s—' Decision Maker's
Viewpoint: p

~

(0,1,0) (0,0,1)

Based upon the initial viewpoint of the decision maker, there is

an initial value of P_.. By "moving" the decision maker's viewpoint
as little as possible and yet conforming with expert judgment, an
adjusted viewpoint pA is obtained with the corresponding "new"
value for Pc. *

Within the statistical literature there are a number of possible
measures for distances between probability vectors (e.g., Rao (1965,
pp. 288-289)). One measure of closeness that has been widely employed
is the Kullback-Liebler discriminator I(a;b) between two probability

AV V]

vectors a = (a ce., a,) and b = (b eess b,), where
n ll r M n 1' ? M ’

e R R s e, ]




M i S e m—— o

- w_w,w:i!E!!!E!EE!H!l-l-lHl-l----u-.--.-.p'..‘

15
M
(3.7 T(a;b) = ¥ a.en(a.bfl) .
P 10 1 1 1

Farmally, thernfore,. the process of finding the adjusted viewpoint
A7 *ha dacicion mker would he equivalent to minimizng I(a;p) over

nNnon
. A , C e
" and *=akine p o as that (uniquen) minimizana value of a. The

A " n
proonartics of *ha Knllback-Tiebler discriminator are extensively
presented in nllback (1959), and Gothale and Kullback (1978)., Akaike
(1077) discusses uses of the Kullhae™-Teibler diceriminator in a
number of arecas of statistical inforence. Fer a review of other
applications, sce Sempren and Smith (1070)

There is a considerable literature on this fvpa of adjustment

process viewed in the contevt of aeneratina prior prohabhilitv distri-

hutions for Payesisn infeoreonce.  An griomnftica’ion o7 “hin process

toaether with an cyterncive dircuscion of thh literatvve ron be

found in Shore and Johnson (10PN . They domonahrate fha's Shn
uze of any seperator othar than (2.2) (which *hov refeorv o oo
crogs—cntropy) for inductive inference whon new Snformnsien - dn
tha form of cynected valuee leads 40 o violation of onn or —ay-n
recasonabhlo consistency avioms.

This adjvstment process has the followina interprotation.  Thn
conventional Shannon-Wiener (J040Y contronv meacure of a disaretns

‘PI

A . . . . . -1
probahility distribution p is given bv I'fp) = % p.opp,".  I"(pY con
a A, i=N - . A
be intuitively viewed as the evpected "surprise” (scc Theil (2067Y)
. . -] . st
assoaciated with p where on P; would bhe the "surprisce” conecratod v
N M

-1
the occurrence of event: i. Re-writine T(a,p) = - ¥ Qifﬁhq{' -
_ N im0 ;
znpi”)], we may interpret JT(g,p) os the negative of the cy¥pected 0iff-
o NN
erence in surprise botween vicwpoints p versus q if in fact the true
n, N
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probability distribution is q. There is accordingly an inherent
asymmetry between p and q inLthe separation measure I(p,q) where
“\ A\, LAV
q assumes the role of the "true" probability distribution.
gote that this interpretation supports the approéch of choosing an

adjusted viewpoint from those q consistent with expert judgment
\
which moreover minimizes I(q,p), i.e., that g generates the least
VAV 4V
expected difference in surprise over the initial viewpoint p.
y

Sampson and Smith have applied this model to the criminalistics

problem of assessing the weight of circumstantial evidence linking

a suspect with the perpetrator of a crime. A number of results
obtained there are also relevant to our problem of assessing Pes

We now paraphrase and summarize these results in the risk determina-

tion context; for a formal treatment see Sampson and Smith.

Definition 3.1. A family of distributions p(i,T), -®» < 1 < =, on

the integers 0, ..., M is a finite exponential family of distribu-

tions with parameter 1, if for every 1

pli,t) = c(T)hieTl, i=0, ..., M,

M

where h0 = h1 =1, h2 >0, ..., hM > 0, and c(t) = (jiohje

(Choosing h0 = h1 = 1 basically fixes scale and location origins

T3, -1

for the family.)

Result 3.1. (a) Every probability distribution p = (po, ey pM)
,

on 0, ..., M with p; 0 belongs to exactly one finite exponential

family of distributions.

% (b) Within a given finite exponential family of dis-

; tributions every member distribution is uniguely indexed by the
| M
l

: parameter r and also by u(7) = ¢

[i c(r)hie‘i].
i=0

e I e
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Thus every finite exponential family of distributions can be
& viewed as a one-dimensional curve in the M-dimensional simplex of
5 probability distributions. These curves never intersect and are
| also space filling in the sense that every point in the interior

of the simplex lies on exactly one such curve.

Consider the decision maker's viewpoint p = (po, oo pM).
n
g By Result 3.1 (a), there is a unique finite exponential family
f . 1.1
r c*(r)h;eTl, - < T < o, such that p; = c*(ro)hie 0 , i=0, ..., M;

| i.e., p is that point on the curve indexed by 1 = Tge
: A"

viewpoint pA can be found by choosing that member of c*(T)h;eTi,
such that D; [i c*(T)h;eTi] - .

Intuitiiggy Result 3.2 states that pA can be found by tracing
the finite exponential family distributiZn curve containing p until
that curve intersects Su' Specifically, the point of interszction

A

E
' Result 3.2. Based upon the expert judgment that EX = u, the adjusted

\ is p
AV
Again it is illustrative to examine the probabilistic geometry

for the case M = 2, using baricentric coordinates.

Figure 3.2
Finding Adjusted Viewpoints (M = 2)

(1,9,0)

Expert Judgment Space: 3
' . . A
‘_3_——Adjusted Viewpoint: p

Finite Exponential Family
Distribution Curve
Containing p

A

u

Decision Maker's
Viewpoint p
Y

0,1,0 (0,0,1)




It is direct to show that (a) 1lim c(T)hieTl =1, if i = 0,

T P -0

and = 0, otherwise; (b) 1lim c(T)hieTl =0, if i <M, and = 1, if

i = M. Thus in terms ofT;:gure 3.2 as 1 varies from -~ to =, the
corresponding point on the finite exponential family curve traverses
from top to lower right bottom. It is visually obvious and
analytically easy to show that Pc is monotone increasing in 1. 1In
fact, however, a stronger result may be stated. Let F(k,1) =

z c(T)hieTl be the c.d.f. of the number of catastrophic events at

t%z M sites. Then in Appendix B, we show that for all k, F(k,1) is
decreasing in increasing t. This is equivalent to saying that the
probability of more than k catastrophes increases as T increases and
decreases as 1 decreases. Thus two different probability vectors

on the same finite exponential family curve represent two stochasti-
cally ordered views of the likelihoods of catastrophic events, with
the viewpoint for a smaller 1 corresponding to a belief that the
likelihood of k or less catastrophic events is larger than for a
viewpoint with a larger 1. Also in Appendix B, we show that the
mapping taking the initial decision maker's viewpoint p to the

Y
. . A, . . .
adjusted viewpoint p is continuous so that small variations

in the initial viewgoint lead to small variations in the adjusted
viewpoint.

Clearly within the model the determination of PC is dependent
upon the value of p. However, it is reasonable to expect that
as the expert judgment becomes compelling concerning the unlikelihood
of a catastrophic cvent, that is, as u > 0, one would find that the

initial decision maker's viewpoint becomes increasingly less impor-

tant in determining P, As noted in (2.4), a priori bounds for P
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are M-lu < Pc < u. In fact for M = 2 these bounds correspond in

Figure 3.2 to the values of P, determirned, respectively, by the
points where the "right-hand" and "left-hand" sides of Su intersect
the boundary of the simplex. Thus, as u + 0, these bounds converge
to 0, demonstrating OEh order agreement in Pc based upon different
viewpoints. More importantly, Sampson and Smith show that this

model provides 15t order agreement.

Result 3.3. Let Py and P, be two different viewpoints and denote

N 4]
by Pi(“) and Pi(u), the respective probabilities of a catastrophic
event based upon expert judgment that EX = p. Then Pé(“) = Pz(u) +

o(u) = u + o(u), where 1lim ol 0.
u>0

3.2 Risk Determination for LNG Tanker Movement

The focus in this case is on obtaining the probability of one
or more LNG tanker spills in the New York harbor over a 10 year
horizon. The generic term "site" in this context becomes tanker
trip, while "catastrophic event" corresponds to an LNG spill. The

expert judgment based on the Federal Power Commissions report is

that there is an expected total number of ING spills of u = §~%3€
e 74
. ‘s . . 1
with a probability of a spill on any one tanker trip of 1,664,179

(from Table 1). With a total of M = 1245 trips over the 10 year
horizon, inequality (2.4) provides upper and lower bounds on the

probability of one or more LNG spills Pc as

7 4

2.4 x 107" < P_ < 2.67 x 10 .

That is, each of the probabilities in this interval of values is

consistent with the FPC report. However, because of the small
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magnitude of these bounds, the first order approximation provided

by Result 3.3 is appropriate in suggesting the value PC = 2.67 x 10—4.
Note that this figure is in agreement with that arrived at by the
FPC. Moreover, this value represents Pc to 1-S—E order regardless

of the initial viewpoint. Thus, two decision makers with differing

points of view when presented with p = would agree based

1
3,746
upon the model that the given figure for P. is correct to the l§E
order.

In order to illustrate the actual adjustment process, suppose
the decision maker's viewpoint can be modeled as p = (.99, .009,

N

.0009, .00009, .00001, 0., ..., 0.). Thus the decision maker

initially believes that the probability of catastrophe is .01l.

Based upon expert judgment that u = 3 %46 = ,0002669, the adjusted
, 74
viewpoint is p” = (.999742, .26 x 107>, .75 x 107°, .22 x 107%,

Y
.70 x 10 11, 0., ..., 0.). Hence, based upon the given FPC judgment

for p and the decision maker's hypothetical viewpoint p, the proba-
n

bility of one or more LNG spills in 1245 trips is 1. - .999742 =

2.574 x 10~ %,

4, MULTIPLE EXPERT JUDGMENTS

4.1 Updating and Merging

Up to this point, we have considered the case where there is
just one expert judgment available. Now suppose that two judgments
are available to the decision maker. There appears to be two basic
situations in this case. One is where both experts are coegual and
their judgments are to be equally and simultaneously assimilated by

the decision maker in the process of adjusting his initial viewpoint.
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The other basic situagion is where the decision maker adjusts his
viewpoint in light of a first expert's judgment and later is con-
fronted with an updated expert judgment to which he must readjust
accordingly. The latter situation is considered first.

Sampson and Smith noted that there are two ways to readjust
the decision maker's viewpoint in light of a superseding expert
judgment. One approach is to discard the viewpoint adjusted to the
first expert's judgment and return to the initial viewpoint; then
the decision maker adjusts in the usual fashion to the second expert
judgment. The other approach is for the decision maker to act as
if the viewpoint adjusted to the first expert judgment is the new
initial decision maker's viewpoint; then the decision maker would
adjust the new viewpoint to take into account the second and super-
seding expert judgment. Sampson and Smith show that based upon the
model, both of these two noted approaches are equivalent.

Now suppose that two coequal experts provide judgments ] and

Mo where it is assumed that By <M RBased on his viewpoint, the

¢

decision maker must simultaneously merge both experts' judgments in

obhtaining the adjusted viewpoint,

A

Denote the decision maker's viewpoint by p and let p? and p,
4" e N

be the two possible adjusted viewpoints corresponding to Hy and s

respectively. Let p* denote the decision maker's adjusted viewpoint
")

where the decision maker in arriving at that viewpoint must merge

the two experts' judgments My and u Within the context of the

2°

model and under the assumption of coequal experts, we reguire

A A
I(p*;pl) =TI (p*:pz) '
n n n 4V
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that is, the decision maker adopts an adjusted viewpoint which is
equally separated from the viewpoints that would be taken based on

each expert separately. Roughly speaking, p* is "informationally
v

A
5
Writing p in its finite exponential family form f(i,TO), where
n .
fli,1) = c(r)hierl, we can by Results 3.1 and 3.2 represent p? by
- M n
0t Let u(t) = £ if(i,t). Without
’ i=0
any further constraints on p*, it is shown in Lemma C.1l (Appendix
4
C) that any p* = (pa, ceny p&) satisfying
4"

equidistant" from p? and p
N "
f(i,Tj), j =1, 2, where 7; < 1

M
(4.1) rip¥=EM(T),
i=0

where T is a random variable with uniform distribution on (11,17),
is "informationally equidistant" from p? and p?. Another way nf
LV N

viewing (4.1) is that F(u(T)) is the meraed value of u, and u, as

3 2

seen by the decision maker with viewpoint p. Note that the meracd
")
is dependent upon the specific viewpoint of the

value of u, and u

1

decision maker.

2

However, within the context of the model, it is reguired that

p* be as informationally close as possible to p. Specifically, we
N v

require that p* minimize T{p*;p) subject to T(p*;p?) = I(p*;pi).
n N NN oot
In Lemma C.2 (Appendix C), it is shown that p* is given by f(i,1*),
v

where 1* is determined uniguely by
(4.2) u(t*) = E(u(T)),

where T has a uniform distribution on (11,12). A graphical pre-
sentation of this process employing baricentric coordinates for
the M = 2 case is given in Figure 4.1; and in Figurec 4.2, we viecw

the process for a general distribution graphing u(r) versus rt.
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Figure 4.1
Merging Two Coequal Expert Judgments,

Baricentric Representation (M = 2)
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Intuitively, the result of (4.2) says that the way to merge
My and Moy is to average the intermediate means by weighting them
uniformly with respect to t along the finite exponential family
curve containing p. Clearly this is different than weighting uni-
formly with respezt to the means themselves; such an approach would
yield (u1 + u2)/2 as a merged opinion. More specifically, from
Figure 4.2 and (4.2), we are able to see that t* is chosen so that
the shaded area under the u(r) function is equal in area to a rect-
angle whose sides are of length Ty = Ty and u(t*). Moreover,
depending on where Ty and T, are located relative to the curvature
of u(t), u(t*) may be closer to uy or to My In the case where T,
is "moderate" and Ty is "small," u(t*) tends to be closer to My
than to Moo

The actual evaluation requires first obtaining Ty and T, cor-
responding to p? and pg, respectively. (Several techniques for this

LY N

are discussed in Section 5.) Then it can be shown (see Appendix C)

that
T
. )—1(2 i
1 ] .

T

1

N ~m=

2

. i si
ds,

u(t*) = —(Tz : :
(p/p )lp.eSl/
0" %1 i

N~ =

e
(=]

where p = (po, Pyr eovr pM) is the decision maker's viewpoint.
v

4.2 Binomial Viewpoints and Rare Expert Judgments

Two special cases for merging are worth considering further.
One is where the decision maker has a binomial viewpoint and the
other is where ¥y and W, are small. Suppose that for some w, P,

. . M, i -1 .
is given by (i)nl(l—n)M t,i=o0, ..., M, and the two experts'

judgments are uy and Moo In Appendix C, it is shown that u*, the




24

merged judgment from the decision maker's viewpoint, can be explic-

itly stated in terms of Hyr Mo and M, as follows:

M- Hp M-y

* = _——-—l —  ————
" M 2n[z— uz](ln[ul P u2]) .

In the second interesting case, we suppose that the expert judgments
uy and u, are quite small. For this case, it can be shown (see

Appendix C) that
(4.3) u* = (u2 - ul)/(zn My = &N ul) + o(max(ul,uz)).

Incidentally, if the decision maker were allowed to have a Poisson

viewpoint, the exact value for u* would be (u2 - ul)/(znu? - znul).
(1)

Note that if instead we are dealing with p* = u*/M, p = ul/M, and
p(2) = “2/M’ then (4.3) can be re-expressed as
) 1l
4.8 pr = (p? - pMy (an p@ < pn pMy |
-vy -v,

Now suppose u; = 10 and My = 10 , where vy is substantially

larger than Vi then from (4.3), it follows that p* can be approxi-

-(v,+log,,V,)
mated by 10 2 1071 .

4.3 Applications of Merging Judgments

The result of (4.4) can be used to merge rare probability judg-
ments concerning SCRAM failures in nuclear reactors. The SCRAM system
in boiling-water reactors is a system whereby the nuclear chain
reaction in a reactor can be stopped quickly. In the Rasmussen

report, the probability of a SCRAM failure was assessed. Lewis

writes
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"The problem encountered in estimating this probability
is that the SCRAM systems are so important and so well
designed that the event in question (SCRAM failure on
demand) has never happened and therefore there is no
basis in experience from which to assess the reliability
of this system." !

Based on two different sets of assumptions, the Rasmussen report

presented two distinctly different probabilities that a typical

(1Y = 10712 a4nq p(z) =10% 1nan

SCRAM operation fails, namely p
attempt to combine these rare judgment probabilities, the geometric
average of 10-9 was employed by the Rasmussen report. This proce-
dure for combining these judgments prompted Lewis to comment "there
may somewhere be a statistician who believes that this is a valid
procedure but he has yet to make himself known." An application

of (4.4) to p(l) = 10_12 and p(z) = 10_6 suggests that the combined
p* should be 1.67 x 10-7 which is a couple of orders of magnitude
less conservative than the Rasmussen report value of 10—9. Note
that in the case of rare expert judgments, the value of p* essen-

A tially does not depend on the decision maker's viewpoint.

Another application of (4.3) is to merging judagments concerning
the seismic safety of nuclear reactors in Case Study 2. In this
case, Pc becomes the probability of one or more reactor meltdowns
during a given year. The sites are literally light water nuclear
reactors. The expert judgment in this case flows from two distinct !
sources. The NRC report placed the mean number of meltdowns over

3 the M = 100 reactor sites at a value of My = 4.7 x 10-5. On the

other hand, the Okrent study assessed the figure at My = 8 x 10_3.

Noting that these figures are sufficiently small so as to justify

use of a first order approximation, we can merge the two expert

judgments according to (4.3), obtaining u* = 1.55 x 10—3. Note
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that the effect of the adjustment process is to give greater weight
to the more conservative figure corresponding to the judgment of
the Okrent study. The ultimate probability fiqure for Pc will
depend on the initial viewpoint of the decision maker. Again, how-
ever, to first order, the merged value for the probability of one
or more reactor meltdowns due to severe seismic activity is

-3
P, = 1.55 x 10 ~.

5. COMPUTATIONAL CONSIDERATIONS

Brockett, Charnes and Cooper (1978) have in essence shown that
the actual derivation of pA from p and u can be viewed as an uncon-
strained convex programmi;g problzm. Consequently, standard computer
packages can be employed. Other mathematical techniques that can
be used in the constrained Kullback-Leibler discrimination minimiza-
tion problem can be found in Kullback and Gokhale. In Appendix D,
we give the details for an IMSL (1979) implementation of the Brockett
et al techniqgue.

Another approach that could be used to finding pA is described
in Lemma D.1 (Appendix D). Let m(s) be the moment g;nerating func-
tion determined by the decision maker's viewpoint probabilities,

eSlpi. Let Sq be the unique solution to

&R

i.e., m(s) =
i=0

m'(s) - um(s) = 0 ;

then the ith entry of pA is given by
v

Toi

. 3
-1 i -1
Py pi(po/pl) e (

j O

N~ =R

j=0

where To = So ~ Rn(po/pl)-




6. DISCUSSION AND SUMMARY

In this paper we have presented an information theoretic model

that provides a minimum bias approach for the merging of expert
judament and decision maker's opinion as to the likelihood of rare,
but catastrophic events. In particular, the decision maker exypresces
his viewpoint concerning the probabilities of various numbers of
catastrophic event occurrences across a number of sites, and the

expert provides his judgment concerning the likelihood of a cata-

strophic event occuring at a typical site. When the expert's judg-
ment is that the likelihood of a catastrophe at a typical site is
remote, we show that decision makers, with different viewpoints,

would still agree (to 1EE order) concerning the probability of

catastrophe.

Using the basic model, we have developed meaninaful and obiec-
tive methods to merae and to update judaments from more than one
expert. Approximations are given for meraing of two eyper: judg-
ments when the judgments indicate the probabilities of catastrophes
are very small. The results for this rare event meraginag arce inde-

endent of the decision maker's initial viewpoint.
p p

Several computational approaches svitable for computer imple-
mentation are discussed.
Lewis wrote concerning "the importance to society of assessing

risk in guantitative terms and of making sound interpretations of

those risks." We believe that our modelling approach provides &n

important step toward attaining this important societal goal.




Appendix A

SITE DEPENDENCIES AND PROBABILITY BOUNDS

A.l1 Dependencies Across Sites

We discuss here the relationship between dependencies among
random variables versus independent random variables sharing an
unknown but common parameter. Parameter here may represent design
commonality, component commonality or operating system commonality.

In particular consider the random variables Wl, Wz, cend WM
serving as indicators for occurrence or non-occurrence of cata-
strophic events over the M sites. Suppose all failures at these
sites share a common component type and manufacturer. Let q repre-
sent the probability that the design of that component type by that
manufacturer is defective. Then q = P(Y = 1), where Y = 1, or 0,

respectively, if the design is defective, or not. Now suppose

|

L fory =1
l P(‘l’i=l|Y=y)={
T - t

™ for y 0,

where "i # "i’ for some i. An expert reliably testifies as to the
likelihood p that a randomly selected site would experience a mal-

function over the horizon time. Then

p=p(, =1y =1P(Y =1) +P(¥; =1|Y = 0)P(Y = 0)

T, + (l-q)M-l
11t i

w!
p i

N ~=

where I is the index of a randomly selected site.

Lemma A.1': The random variables Yoo ¥ scee, ¥, are conditionally

2’ M

+We assume here for simplicity that the component of interest repre-
sents the only commonality among the sites.




! independent given Y.

Proof: Immediate. r1

Lemma A.2: The random variables ¥ W?, ..., ¥, are unconditionally

1'
dependent.

Proof: Suppose T # ﬂi. Then
T)T,q + niné(l - q)

n2q + ni(l - q)

P(¥Y, = 1|\y2 = 1)

1

# Tq + wi(l -q) = p(‘l’1 = 1), rT

Since we are not in general aware of the value of Y, i.e., whether
or not a design error has been made, we are in the situation of
Lemma A.2.

The above analysis can be easily generalized to the case of
multiple common components or subsystems by letting Y bhe a binary

vector of dimension equal to the number of distinct shared com-

ponents. Obviously in practice, the specification of a complex I

system in this fashion is essentially impossible.

A.2 Bounds for Rc

A proof of the upper and lower bounds of (2.2) for the general
case of ¥yo Yor ooy Wﬁ following an arbitrary multivariate distri-

bution follows.

Theorem A.l: Suppose Wl, Wz, cees WM are zero-one random variables

M
with ", Prob(wj = 1) being given. Let X = I ¥ and Pc = p(X > 1).
) i=1
Then
M
(A. 1) max ®, <P < min( I w,,1).
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Moreover, these bounds are attainable, whenever EX < 1.

Proof: Let Fw(t) denote the joint c.d.f. of ¥yr «e+s ¥yr where the

M
. th . ~ .
i~ marginal c.d.f. is Fi(ti) =0, for t; < 0; =p,, for 0 < t, < L
and = 1, otherwise. Then for all t
4"

M
(A.2) max{(0, £ F (t,) = (M~ 1)) < F () < min {F,(t,)}.

ji=1 1 1 3% 1<iem 01

(See Dall'Aglio.) Note that Pc =1 - FW(O), so that (A.2) immedi-
LVIL V]

ately implies (A.1l). The attainment of the lower bound of (A.1l)
M
follows from the fact that min {F,(t,)} is a c.d.f. If I =, < 1,
1<i<M 1 i=1

the upper bound of (A.l) is attainable because the lower bound of
(A.2) is itself a c.d.f. (see Dall'Aglio or Conway (Theorem 5.2;

1979)). M

Another way of viewing Theorem A.l is to define ¢l = {Fw(t):
N, N

for all i, P(‘l‘i =1) = 7, and P(y, = 0) = 1 ~ vi}. Then thinking

of P_ as a function of F_ (t) € ¢ (A.1) provides attainable upper

¢ £~ 1
and lower bounds on P, as Fx(t) varies over ¢,. Now suppose that
4"

full marginal information is not known and all the information that
M

is available is M_l

m, = p. Define o, = (P (t): for 211 i,
M LAY
= 1, and (M_l) % P(\vi = 1) = p}. Clearly
i=1
2 i 0y Then as F_ (t) ranges over DY obtainable upper and lower
FEY] !

bounds for P_ are given by (2.3).

g 1
i=l =
P(Y, = 0) + P(¥, = 1)
1 1

[P w—

Ee——




Appendix B
STOCHASTIC ORDERING AND CONTINUITY OF ADJUSTMENT PROCESS

R.1 Stochastic Ordering of Exponential Family Distributions 1

Definition B.1 (E.qg., Lehmann (p. 73, 1959)). A family of cumula- !

PrsheheliShthaghuy -

(decreasing) in t if 7 < t' implies FT(x) > (<) FT'(X) for all x. i

It follows from Lehmann (1959; Corollary 2, p. 70 and Lemma

[x] i
2, p. 74) that FT(x) = I c(T)hieTl, X < M, is stochastically
i=0
increasing in t. A more direct proof follows below, but first we

require a simple probability lemma of interest in itself.

Lemma B.l. Let X be a random variable taking on value i with proba-

bility Wy where i 0, -+.., M. Then for all k,

iw, .

(r.1) (EX) (P(X ;

I A

k
k)) > =%

i=0

Proof: For any k < [EX], where [+] denotes the greatest inteqer

function, we have = (i - EX)“% < 0 so that (R.]) is immedinte.

i=0 ¥, ’
Suppose that there exists kn > [FY1 =such that ¥ (i - RX\mi > 0.
i=n -
However, because
M ko M
0= I (:i.--EX)ou,i = % (i —E){)u)_.' + b3 (i-E(X))w..',

i=0 i=n izk +1
g

we obtain an immediate contradiction concerning the existence of

such a k_. [
[e] .

Theorem B.l. ILet p(i,t) = c(r)hiOTl, i, =0, ..., M and let F(k,T) =
k ’

r pli,t). Then F(k,1) ir o {d~crcasina function in t for 211 ¥ = 0,
i=n

ee-» M.

Proof: Note that since pft) = -a'(1)/c(1),
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k k . |
ar(k, 1) r c'(vh.e™ + 5 ic(t)h.e™
dt _ i . 1 {
i=0 i=0
k
= ~J(RX) (P(X < k)) - % iP(X = 1)1},
5540

where X is a random variable with p.d.f. p(i,t). The result is now

immediate from Lemma B.1. rT

B.2 Sensitivity of the Adjusted Viewpoint to Variation in the

Initial Viewpoint
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Appendix C

MERGING COEQUAL EXPERT JUDGMENTS

C.l1 The General Case

Lemma C.l describes which viewpoints are "informationally
equidistant” from two adjusted viewpoints determined by a decision
maker from two coequal expert judgments. Lemma C.2 utilizes Lemma
C.l:to choose among these viewpoints that viewpoint "closest" to

the decision maker's viewpoint.

Lemma C.l. Suppose that P, and p, are given, respectively, by
N 3y

f(i,Tl) and f(i,Tz), nhere Ty < T, and f(i,1) = c(T)hieTl, i=0,
L if(i,t). Then a necessary and sufficient
i=0
* * : * . = * . :
(po, ey pM) satisfy I(R 'Rl) I(s ,52) is

ee., M. Let u(m)

condition that p*
M "

that I ip; = E(u(T)), where T is a random variable having uniform
i=0

distribution on (Tl, Tz).

Proof: 1If I(p*;pl) = I(p*;pz), then
n " N

N
M p; M ;
(C.1) I p* ¢n( ) = I p* anl( )
i=0 * P1i i=0 Pai

where P1i’ Pajir and pi are, respectively the (i+l)st entries of

Pis Py and p*. Equation (C.1l) and the form of f£(i,T) imply
v 4V N

M M
_E p;[ln C(Tl) + 2n hi + 111] = I p;[ln C(T2) + &n hi + 121],
i=0 1=0
which, in turn, implies
M -1
3 * = _ - -
(C.2) 1201 P} (1,-14) " (&n clr,) gn clty)) .

By differentiating with respect to Tt the equation




we obtain

(C.3) u{t) = ~(dc(1)/d4t)/c(1},
and, hence, from (C.3), we may represent
(Cc.4) tn c(t) = =f° p(s)ds + K,

where K is a constant. Substituting (C.4) into (C.2), we obtain

M 1Ty 3
(Cc.5) T ip*= (t,-1,) f u{s)ds, i

. i 2 1 \

i=0 T4 j
and the result now follows. r1

Lemma C.2. Suppose that p, Py and p, are given, respectively, hy
4] s

N .
f(i,t,), £(i,t,), and £(i,t.), where 1, < 1, and f{i,1) = C(T)h.OTl,
0 1 2M 1 2 i
i=0, ..., M. Let u(t) = ¥ i £(i,1). Then
i=0
min I(q;p)
q:1(g;py)=I(gip,) ~
v N v
occurs uniquely at g = p*, where p* = £(i,t*) and t* is determined
Y] v 4
by u(r*) = E(u(T)), where T is a random variable having a uniform

distribution on (Tl,Tz).

Proof: This follows immediately from Lemma C.l1 and Result 3,2, [1
A more specific representation for p(t*) in terms of the deci-
sion maker's viewpoint can be obtained. Let p = (po, ceoy pM) be
N

the viewpoint with Py > 0 and Py > 0. Sampson and Smith (1979,

PREP,

(4.2)) showed that the finite exponential family containing p can %‘
N

be parametrized by




T,
ke s e
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. - -1 i ti
(C.6) fl(i, 1) = C(T)po pi(po/pl) e ,
M
where c(t) is chosen so that ¥ f(i,t) = 1. When 1 = 1n(p1/po),
i=0
; fli, 1) = Py~ Again noting that u(r) = -c'(t1)/c(t), and using
(C.6), we can rewrite (C.5) for computational purposes as
; M i si
' T iiol(po/pl) p;e
* - - -
plt*) = (Tz 7,) ﬂ ( M : Si)ds.
1 iio(po/pl) p.e

C.2 The Binomial Case

Now suppose that the decision maker has a binomial viewpoint,

i.e.,

(C.7) p; = (?)ﬂi(l - W)M-i.

Then (C.7) can be parametrized as

Mt

f(i,7) = e (b.q)eiT

i. '
E where T = ¢n(n/(1l-m)). If we parametrize by py = Mw, then 1 =
¢n{u/(M - p)). Suppose that we have two expert opinions My < N,

with corresponding 1, < 1

1 2° By Lemma C.1, the merged opinion u*

! is given by '

T s

p* = (1., - 1 y~Lop2_Mem 44
2 1 s
T, 1 + e

1
. _ T T
L = M1, - 1) M en(L + e 2)/(1 + e D).

Substituting in terms of Hyr Uy, Wwe have

! )
u* = M ln[FTTTTT_](Qn[__ .
2 M1

-—u -
M - ul]) . ‘
2




C.3 Merging Rare Judgments

We now consider rare judgment approximations; that is, the
case where My and u, are small. Sampson and Smith (1979, Equation

(5.2) show that
(C.8) u(t) = et + e(1),

where lim e(t)/u{x) = 0.

THr=

Let 7, < T, correspond to expert judgments My < Hye Then by
(c.5) and (C.8),

u* = a + B8,
T T T
2 _ o1y ana g = (Tz-Tl)_lf 2. (s)ds.
T1
Observe that e(s) = u(s) - e® is the difference of two con-

1

where o = (12-11) (e

tinuous functions and hence is also continuous. Therefore, e(s)
attains its maximum value over [11,12]. Let e(riz) = max e(t).

T,<T<T
Then 1-=2

B < (1=t Tle(rt,) (1,m1) = e(t8,),

It follows that
B = o(uz),

because as 12 > —o

T T
2 e(t*,) 2
51 = E ?] < T%Z ?J + 0, as u, + 0.
2 e 2 2 e 12 2 .
Now, by (C.8), u(r)/eT +1as t + -», and since 1(n) = u-l(u)

(see Sampson and Smith (1979, Equation (4.3))), we obtain that
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u/eT‘“) + 1 as u » 0, which implies that t(u) = &n u + o(u). Hence,

-1 o(uz) o(ul)
a = (&n My + 0(”2) - &n oy, - o(ul)) (e H, - e “1)'
Note that
1 Hy = My o(uz) o = 1
2nu2 nul o) uz nuz 2nu1
-+ 0, as My 0,
so that it now follows that
Hy = U
2 1
* =
u &n p, - in opg +oluy) .
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Appendix D
A

COMPUTING P BASED UPON U AND P
4V v

Brockett, et al have shown that the problem of minimizing the
Kullback-Liebler discrimination subject to constraints on the proba-
bility vector obtained can be re-expressed as an unconstrained con-
vex matheﬁatical program. Specializing their results to our case
results in the following mathematical program:

z2-1 m izl
(P) Minimize y = e ( Z p;e ) - uzy -z, .
zy,2, i=0
Letting the solution to (P) be zi, 25' we obtain

3 % X o
A 1z1 + 22 1

p; = p;e i=20, ..., M.

The program (P) may be quickly and easily solved by any unconstrained
mathematical programming algorithm. For example, IMSL (International
Mathematical and Statistical Library) has a FORTRAN callable sub-
routine ZXMIN which will solve (P) after defining the function y

as a user supplied FORTRAN subroutine. For problems where a large
number of p; are positive or py is very small additional care must

be taken to avoid computational numerical difficulties.

Another approach to computing pA makes use of certain rela-
tionships between finite exponential families containing a viewpoint
p and the moment generating function corresponding to p. Throvch
:his approach, the optimization problem becomes one ofmfinding the

unique root of a specific equation. One of the benefits of this

approach is that for small M, the problem can be solved reasonably

readily on a programable hand calculator.
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Lemma D.l. Suppose p = (po, ceey pM), Pg > 0, Py > 0, is the
v
decision maker's viewpoint and let f(i,t), given by (C.6) be the

finite exponential family containing p. Then the unique 1, which

0
4V
satisfies u(ro) = Uy is 15 = 55 - ln(po/pl), where s, is the solu-
tion to
(c.7) m'(s) - uom(s) =0,

where m(s) is the moment generating function of p.

N

Proof: The equation uf(t) = My Can be rewritten as

M . .

-1 . iTi -1
(C.8) P, iiol pi(po/pl) e = U, c(1)
-1 " i Ti
= WPy I Py (pg/Py)e " .
i=0

n Ti
Since m(t) = I Pie (C.8) can be rewritten as

i=0

m' (1 + &n(p,/p;)) = ugm(t + &n(p,/p;))

and the result then follows. rj
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